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Abstract. A differential cluster variation method (DCVM) is proposed for analysis of spinoidal decompo-
sition in alloys. In this method, lattice symmetry operations in the presence of an infinitesimal composition
gradient are utilized to deduce the connection equations for the correlation functions and to reduce the
number of independent variables in the cluster variation analysis. Application of the method is made to
calculate the gradient energy coefficient in the Cahn-Hilliard free energy function and the fastest growing
wavelength for spinodal decomposition in Al-Li alloys. It is shown that the gradient coefficient of con-
gruently ordered Al-Li alloys is much larger than that of the disordered system. In such an alloy system,
the calculated fastest growing wavelength is approximately 10 nm, which is an order of magnitude larger
than the experimentally observed domain size. This may provide a theoretical explanation why spinodal
decomposition after a congruent ordering is dominated by the antiphase boundaries.

PACS. 64.75.+g Solubility, segregation, and mixing; phase separation – 81.30.-t Phase diagrams and
microstructures developed by solidification and solid-solid phase transformations –
05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

Phase transformation is critically important to the
development of new materials since it yields abundant
microstructures in the micro/mesoscopic scales. For the
spinodal decomposition, the phase transformation is de-
termined mainly by diffusion since there is no thermody-
namic barrier [1–3]. Compared with that in a nucleation
process, the domain size distribution width in a spinodal
decomposition of binary systems is greatly compressed,
which may produce rather interesting nanostructures [4].
Spinodal decomposition has been commonly used to con-
trol grain structure in materials such as Alnico alloys and
Al-Li alloys to enhance the properties of these materi-
als [5–7].

The most widely used continuum theory to de-
scribe spinodal decomposition was presented by Cahn
and Hilliard [8,9]. The free energy of a composition-
ally non-uniform alloy is expressed in the theory as a
Ginzburg-Landau expression:

F ({c(r)}) =
∫ [

f0(c) + κ(∇c)2
]
d3r, (1)

where f0(c) is the local free energy density of the homo-
geneous system and κ is the gradient energy coefficient.
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In the initial stage of spinodal decomposition, the
Cahn-Hilliard equation can be approximately linearized
and analytically solved. When possible strain effect is ig-
nored, one finds a fastest growing wavelength [10]

λm = 4π

[
κ

/
∂2f0(c)

∂c2

]1/2

· (2)

It has been recognized that λm is an important
quantity to characterize domain size distribution in
the decomposition process, hence could be useful in
the design and evaluation of new materials. The lo-
cal free energy density f0(c), which describes the equi-
librium thermal properties of system, can be obtained
from the highly accurate calculation-of-phase-diagram
(CALPHAD) method or other theoretical methods such
as cluster variation method (CVM) and molecular dy-
namics (MD). However, the gradient energy coefficient κ,
as a parameter related to the non-equilibrium kinetics,
has seldom been directly calculated. Considering only the
nearest-neighbor interactions, κ of an AB binary alloy
with simple cubic lattice was expressed under a point
mean-field approximation (regular solution model) as [8]:

κ =
2
3
hM

0.5r
2
0 , (3)
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in which hM
0.5 is the heat of mixing per unit volume at

the composition c = 0.5 and r0 is the nearest-neighbor
distance. Recently, by using a supercell CVM approach,
Asta and Hoyt calculated the gradient coefficient of Ag-Al
alloys and revealed some behaviors of κ that are different
from the prediction of the regular solution model [11]. As
these authors pointed out, the values of κ may have been
influenced by the choice of parameters in their method
because of the effects of higher order terms in the gradi-
ent expansion of the free energy. In this paper, we present
a differential cluster variation method (DCVM) based on
the infinitesimal analysis to calculate the gradient energy
coefficient. As will be shown, this method naturally avoids
the influence of the higher order terms in free energy
expansion.

In phase transformation, the decomposition process
can be accompanied by an ordering process. Due to the
long-range diffusion associated with decomposition and
the short-range diffusion associated with ordering, a con-
gruent ordering process frequently occurs prior to the de-
composition process [12]. For example, in Al-Li alloys,
an important aerospace material, ordering and decom-
position processes result in precipitates of an ordered
δ′ (Al3Li) phase. If an congruent ordering process takes
place first, spinodal decomposition does not occur from
an initial disordered phase, but from a congruent ordered
phase, in which case equation (3) is no longer applicable.
It would be interesting to explore the influence of congru-
ent ordering on the values of κ. By using the proposed
DCVM method, we will calculate the gradient coefficient
and the fastest growing wavelength of Al-Li alloys, and
discuss implications on the actual decomposition process.

2 Methods

Cluster variation method (CVM) is a highly efficient
microscopic method to evaluate the configurational free
energy and determine the order-disorder phase transfor-
mation [13–15]. In an alloy system, the configurational
free energy is determined by the probabilities of all possi-
ble configurations. The essence of CVM lies in using the
probability of some small clusters to approximately evalu-
ate the probability of the entire system in order to greatly
decrease the number of independent variables. To facili-
tate the calculation, lattice symmetry is used to reduce the
number of independent variables. For the homogeneous al-
loys, the pair of integers (n, t) is always used when refer-
ring to a specific n-point cluster with index t [16]. In the
general case of inhomogeneous systems, a site variable r
is needed to specify the location of the cluster [11]. In this
paper, we denote γ ≡ (n, t), and thus (r, γ) to specify
a cluster. Clusters (r, γ) and (r′, γ) are related by a dis-
placement translation r′ − r. The correlation function of
the cluster (r, γ) is denoted as ξr,γ . The equilibrium value
of ξr,γ is determined by macroscopic conditions such as al-
loy composition c and temperature T . For the system with
translational symmetry, we have the following relation:

ξr+L,γ(c) = ξr,γ(c), (4)

where L is the displacement vector of the symmetry op-
eration. (T is omitted in the equation since it is always
a constant.) By using the above relation, the equilibrium
properties of the homogeneous system, including the local
free energy density f0(c) in equation (1), can be deter-
mined in the conventional CVM procedure.

When there are compositional fluctuations in the sys-
tem, the free energy can be expanded with respect to the
homogeneous state. In principle, the compositional fluctu-
ations can be expressed as a sum of Fourier components
and the free energy expansion of any Fourier component
can be independently solved by the general k-space for-
malism in standard fluctuation theories [17]. In this paper,
however, we directly consider a composition gradient in
the system to evaluate the gradient coefficient κ in equa-
tion (1). The introduction of a gradient usually destroys
the lattice symmetry (point group and translations), and
equation (4) is no longer valid. The number of independent
variables would become much larger than that in the ho-
mogeneous case. (Correlation functions of all clusters re-
lated by the symmetry operations are equivalent and can
be represented by the same independent variable.) One
method to solve this problem is to enlarge the number of
independent variables, i.e., to use a supercell, to include
a non-uniform composition variance. In the work of Asta
and Hoyt, 98 planes were used to calculate the gradient
coefficient of Ag-Al alloys [11].

Here, we develop a differential cluster variation method
to solve the problem. The method is based on the obser-
vation that equation (1) is defined under the condition of
small composition gradient ∇c. If ∇c is too large, higher
order terms in the free energy expansion may be impor-
tant and can not be simply ignored. To avoid the influence
of higher order terms, we examine the response of the sys-
tem to an infinitesimal composition gradient. In such an
analysis, clusters related by lattice symmetry operations
under the uniform state can be related under an infinites-
imal gradient variance. A supercell is thus unecessary.

In our method, two kinds of infinitesimal variances
upon the system are considered: (1) an infinitesimal com-
position gradient ∇c = dg which keeps the composition
at the origin as c and (2) an infinitesimal uniform com-
position variance dc. The correlation function under such
variances is denoted as ξr,γ(c, dg, dc) [the correlation func-
tion of the homogeneous system is ξr,γ(c)]. By applying
the Taylor expansion,

ξr,γ(c, dg, dc) = ξr,γ(c) +
(

∂ξr,γ(c)
∂g

· dg +
∂ξr,γ(c)

∂c
dc

)

+
1
2

[
∂2ξr,γ(c)

∂g∂g
: dgdg + 2

∂2ξr,γ(c)
∂g∂c

· dgdc

+
∂2ξr,γ(c)

∂c2
(dc)2

]
, (5)

where ∂ξ
∂g , ∂ξ

∂c , ∂2ξ
∂g∂g , . . . are expansion coefficients to be

determined by minimizing the free energy. We have ex-
panded ξ only to second order terms because the gradient
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Fig. 1. Schematic graphics of the translation symmetry under
a compositional gradient dg. After the translation with a dis-
placement L, point 1 changes into point 2. If there is a uniform
composition variance L·dg, point 1 changes into point 3, which
is equivalent to point 2.

energy in equation (1) is related to the second order terms
of the free energy. Now consider a translation operation L
which is a symmetry operation under the uniform case.
When there is a gradient variance dg, the system after
the translation is not identical to that before the transla-
tion (see Fig. 1, point 1 is not equivalent to point 2). The
composition of the system changed by L · dg after trans-
lation. Therefore, for two clusters located at r and r + L
which are related by the translation operation, the sym-
metry property gives

ξr+L,γ(c, dg, dc) = ξr,γ(c, dg, dc + L · dg). (6)

(See Fig. 1, point 2 is equivalent to point 3.) Substituting
equation (5) into the above equation yields

ξr+L,γ(c) +
(

∂ξr+L,γ(c)
∂g

· dg +
∂ξr+L,γ(c)

∂c
dc

)

+
1
2

[
∂2ξr+L,γ(c)

∂g∂g
: dgdg + 2

∂2ξr+L,γ(c)
∂g∂c

· dgdc

+
∂2ξr+L,γ(c)

∂c2
(dc)2

]

= ξr,γ(c) +
[
∂ξr,γ(c)

∂g
· dg +

∂ξr,γ(c)
∂c

(dc + L · dg)
]

+
1
2

[
∂2ξr,γ(c)

∂g∂g
: dgdg + 2

∂2ξr,γ(c)
∂g∂c

· dg(dc + L · dg)

+
∂2ξr,γ(c)

∂c2
(dc + L · dg)2

]
, (7)

which leads to the following connection equations for the
expansion components:

ξr+L,γ(c) = ξr,γ(c), (8)
∂ξr+L,γ(c)

∂g
=

∂ξr,γ(c)
∂g

+
∂ξr,γ(c)

∂c
L, (9)

∂ξr+L,γ(c)
∂c

=
∂ξr,γ(c)

∂c
, (10)

∂2ξr+L,γ(c)
∂g∂g

=
∂2ξr,γ(c)

∂g∂g
+ 2

∂2ξr,γ(c)
∂g∂c

L +
∂2ξr,γ(c)

∂c2
LL

(11)

. . .

For a point group operation, similar equations can also be
derived in a similar way. Based on these equations, for a
group of clusters related by the symmetry operations of
the lattice, their correlation functions can be expressed by
that of a representative independent cluster even if there
is an infinitesimal gradient variance.

To deduce the equations to solve the expansion coeffi-
cients, we expand the differential of the free energy as:

∂F (c, dg, dc)
∂ξr,γ

=
∂F (c)
∂ξr,γ

+
∑
r′,γ′

∂2F (c)
∂ξr,γ∂ξr′,γ′

dξr′,γ′

+
1
2

∑
r′,γ′;r′′,γ′′

∂3F (c)
∂ξr,γ∂ξr′,γ′∂ξr′′,γ′′

dξr′,γ′dξr′′,γ′′

=
∂F (c)
∂ξr,γ

+
∑
r′,γ′

∂2F (c)
∂ξr,γ∂ξr′,γ′

{(
∂ξr′,γ′(c)

∂g
·dg+

∂ξr′,γ′(c)
∂c

dc

)

+
1
2

[
∂2ξr′,γ′(c)

∂g∂g
: dgdg + 2

∂2ξr′,γ′(c)
∂g∂c

· dgdc

+
∂2ξr′,γ′(c)

∂c2
(dc)2

]}

+
1
2

∑
r′,γ′;r′′,γ′′

∂3F (c)
∂ξr,γ∂ξr′,γ′∂ξr′′,γ′′

×
(

∂ξr′,γ′(c)
∂g

· dg +
∂ξr′,γ′(c)

∂c
dc

)

×
(

∂ξr′′,γ′′(c)
∂g

· dg +
∂ξr′′,γ′′(c)

∂c
dc

)
. (12)

For a non-point cluster (r, γ), the minimization of the free
energy gives

∂F (c, dg, dc)
∂ξr,γ

= 0. (13)

For a point cluster (r, γ), the free energy should be mini-
mized under the composition constraint as

∂F (c, dg, dc)
∂ξr,γ

= µr, (14)

where µr is the chemical potential at site r which controls
the composition in the system. It has a uniform value at
different sites in a homogeneous system [15]. When there
is a gradient composition variance, µr also varies with the
gradient. Combining equations (12–14) and utilizing equa-
tions (8−11), the equations to determine the expansion
coefficients, ∂ξ

∂g , ∂ξ
∂c , ∂2ξ

∂g∂g , . . ., can be easily obtained.
After solving the expansion coefficients, one can calcu-

late the free energy of the system under any infinitesimal
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gradient and uniform variances as:

F (c, dg, dc) = F (c) +
∑
r,γ

∂F (c)
∂ξr,γ

dξr,γ

+
1
2

∑
r,γ;r′,γ′

∂2F (c)
∂ξr,γ∂ξr;,γ′

dξr,γdξr′,γ′. (15)

The gradient energy coefficient κ is then calculated ac-
cording to equation (1). Since the free energy is expressed
as an energy part and an entropy part in CVM, one can
independently calculate the contributions of energy and
entropy to the gradient coefficients. In the regular solution
model, the entropy depends only on the point probability,
hence has no contribution to the gradient coefficient [8].
When the correlations between different points are con-
sidered (such as CVM), as will be demonstrate next, the
entropy will give a finite contribution to the value of κ.

The method proposed here can be generalized to in-
cluding higher order terms in the expansion of the free
energy and other kinds of infinitesimal variance. This will
not be pursued in this paper.

3 Results and discussions

In this section, the method presented above is applied to
calculate the gradient energy coefficient along the (100) di-
rection in an fcc lattice.

To compare the new method with the regular solution
approximation [8], we first consider an exemplary AB spin-
odal system with the nearest-neighbor interaction. The
value of the nearest-neighbor effective pair interaction is
arbitrarily chosen as −100kB (kB is the Boltzmann con-
stant). The nearest neighbor pair is used as the basic
cluster in CVM calculation for this case. This is a very
“pure” spinodal system that experiences a decomposition
into a mixture of A-rich and B-rich disordered phases at
low temperatures. There is no other ordering or decom-
position process in the system. The spinodal temperature
at a composition c = 0.5 is determined as Tc = 1090 K in
our calculation.

In Figure 2 the calculated values of κ are plotted
as a function of composition at temperatures T = 500
and 700 K. The result of the regular solution model is
also plotted as the dotted line for comparison. The κ value
at c = 0.5 is very close to the prediction of the regular so-
lution model. When the composition deviates from 0.5,
κ increases steadily. Such behaviors originate from the
pair correlations that are ignored in the regular solution
approximation. These characteristics are consistent with
previous supercell CVM calculation results on Ag-Al al-
loys, where a similar spinodal decomposition process on
disordered phase was considered [11]. In contrast to ref-
erence [11], no abnormal behavior is observed at c = 0
in Figure 2.

We turn to a more realistic system, Al-Li alloys, an ex-
ample of material ordering strengthening [6,7,18]. In this
system, the ordering process usually occurs much faster

Fig. 2. The gradient energy coefficient κ (in units of kB/r0

where r0 is the lattice constant) of a disordered fcc binary
system as a function of the composition c. The dotted line
denotes the prediction of the regular solution model.

Fig. 3. The gradient coefficient (κ) with the corresponding
contributions from energy (κE) and entropy (κS) of the con-
gruent ordered Al-Li alloys as a function of the Li composition
when the temperature is fixed at T = 500 K.

than the decomposing process due to the difference in
diffusion length scales [19,20]. We first optimize the or-
dered parameter at every composition by the conventional
CVM process, and then use the DCVM method to inves-
tigate the response of the system to a gradient variance.
In other words, we calculate the gradient coefficient of the
congruent ordered phase. The effective pair interaction pa-
rameters are taken from the study of Garland et al. [21],
where the nearest and second-nearest-neighbor effective
pair interactions were chosen as 210kB and −105kB, re-
spectively.

The calculated gradient energy coefficient κ, together
with the contributions from energy and entropy parts (κE

and κS), are shown in Figure 3 as functions of the Li com-
position at T = 500 K. An extraordinary characteristic of
the result is that the calculated κ of Al-Li alloys here is
about one order of magnitude larger than that in Ag-Al
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Fig. 4. The fastest growing wavelength λm of the congruent
ordered Al-Li alloys calculated according to equation (2). The
temperature is fixed at T = 500 K.

and Al-Zn alloys [11,22]. This indicates that the congru-
ent ordering greatly affects the gradient coefficient of the
system. When a congruent ordering occurs in Al-Li alloys,
the face-center sites of the fcc lattice are mainly occupied
by the Al atoms, resulting in a very low local Li composi-
tion at these sites. This may be an important source of the
large κ in Al-Li alloys as κ increases at small compositions
in an disordered phase (Fig. 2 and Ref. [11]).

By using the κ value in Figure 3, the fastest grow-
ing wavelength λm is calculated according to equation (2)
for various Li compositions. It appears that λm is on the
order of about 10 nm (Fig. 4). According to previous
experiments and microscopic simulations, the modulation
wavelength of Al-Li alloys in the early stage is about
1 ∼ 2 nm [23,24]. The discrepancy between the calculated
λm value and the experiments and the pervious simulation
results may be attributed to the existence of antiphase
boundaries in the congruent ordered phase. When a spin-
odal decomposition occurs after a congruent ordering, the
microscopic simulation reveals that the structural evolu-
tion in the decomposition process is dominated by the
antiphase boundaries produced in the congruent ordering
process, e.g., the equilibrium disordered phase appears
and grows at the antiphase boundaries [12,19]. The an-
tiphase boundaries play the role of nuclei for phase decom-
position. Thus the modulation wavelength is determined
by the distribution of antiphase boundaries. However, in-
side the spinodal region of the phase diagram, any fluctu-
ation, no matter how small in degree, decreases the free
energy and destablize the system. It is thus quite confus-
ing why a spinodal decomposition does not occur sponta-
neously inside the congruent ordered domains even. The
calculation result of the fastest growing wavelength in Fig-
ure 4 may provide an answer to this puzzle. For the spin-
odal decomposition process, there is a critical wavelength
λc = λm/

√
2. Fourier components with modulation wave-

length λ < λc tend to decay while those with λ > λc will
grow. According to the results in Figure 4, the critical

Fig. 5. The gradient coefficient of the congruent ordered Al-Li
alloys as a function of temperature when the Li composition is
fixed at 15%.

wavelength λc is larger than the size of congruent ordered
domains observed in experiments and in previous simula-
tions. Therefore, the spinodal process is suppressed inside
the congruent ordered domains. On the basis of this expla-
nation, when the decomposition process occurs after the
congruent ordering, there is no essential difference for the
systems inside and outside the spinodal region due to the
antiphase boundaries.

In the work of Banerjee et al. [25], different instabili-
ties in Al-Li alloys were determined using first-principles
calculations in conjunction with the static concentration
wave model, where the critical spinodal corresponds to
the states with an infinite fastest growing wavelength
[λm → ∞ with ∂2f0(c)/∂c2 = 0, see Eq. (2)]. Our above
analysis suggests that the antiphase boundaries also play
important role on the stability of the systems when the
kinetic effect is involved.

It should be noted that the strain energy is not con-
sidered in the present calculation of the fastest growing
wavelength λm. If the strain effect is involved, λm is ex-
pected to be larger than the current values, which will not
change the above conclusions.

Figure 5 shows the gradient energy coefficient κ of Al-
Li alloys as functions of temperature when the Li compo-
sition is fixed as 15%. κ of Al-Li alloys increases with in-
creasing temperature. Only when the temperature is close
to the stability limit of the ordered phase does the κ value
drop rapidly.

4 Summaries

In this paper, a differential cluster variation method
(DCVM) is developed and used to calculate the gradient
energy coefficient (κ) in the Cahn-Hilliard course-grained
free energy for spinodal decomposition. The symmetry
equations of clusters are deduced from the symmetry
operations of a lattice under an infinitesimal composi-
tion gradient in the system. This treatment significantly
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reduces the number of independent variables in compar-
ison with a supercell CVM analysis. The DCVM is an
intrinsic method to determine different order terms in the
gradient expansion of the free energy. As example appli-
cations, the value of κ are calculated by this new method
for two alloy systems with fcc lattice. It is shown that
the κ values for systems with only the nearest-neighbor
interaction are very close to the prediction of the point
mean-field approximation (regular solution model), while
significant differences emerge at low temperatures and ex-
treme compositions. For the Al-Li alloys where a congru-
ent ordering occurs prior to the spinodal decomposition,
κ is found to be much larger than the disordered system.
The fastest growing wavelength is calculated to be approx-
imately 10 nm at 500 K, which is one order of magnitude
larger than the experimentally observed domain size. This
provides a theoretical explanation of the previous discov-
ery that the spinodal decomposition after congruent or-
dering is dominated by antiphase boundaries produced in
the congruent ordering process.
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